space.gif (104 bytes)  
Roofing Specialists


Email Here!
Email Here!

Fill in the To:addess as in the image above. 
 

Home page logo: Ongong slate roof repair. Photo: Jeffrey S. Levine

The Repair, Replacement
& Maintenance of Historic
Slate Roofs

Jeffrey S. Levine

Introduction
History of Slate Use
Character and Detailing
Where Does Slate Come From?
Deterioration of Slate and Slate Roofs
Repairing Slate Roofs
The Replacement of Deteriorated Roofs
Maintenance
Conclusion

The Character and Detailing of Historic Slate Roofs

During some periods of architectural history, roof design has gone far beyond the merely functional and contributed much to the character of buildings. Roofs, by their compelling forms, have defined styles and, by their decorative patterns and colors, have imparted both dignity and beauty to buildings. The architectural styles prevalent during the latter half of the nineteenth and early twentieth centuries placed strong emphasis on prominent roof lines and greatly influenced the demand for slate. Slate, laid in multicolored decorative patterns, was particularly well suited to the Mansard roofs of the Second Empire style, the steeply pitch roofs of the Gothic Revival and High Victorian Gothic styles, and the many prominent roof planes and turrets associated with the Queen Anne style. The Tudor style imitated the quaint appearance of some English slates which, because of their granular cleavage, are thick and irregular. These slates were often laid in a graduated pattern, with the largest slates at the eaves and the courses diminishing in size up the roof slope, or a textural pattern. Collegiate Gothic style buildings, found on many university campuses, were often roofed with slate laid in a graduated pattern.

graduated slate roof
This graduated slate roof is composed of large, thick slates at the eave which are reduced in size and thickness as the slating progresses to the ridge. Photo: Jeffrey S. Levine.

The configuration, massing, and style of historic slate roofs are important design elements that should be preserved. In addition, several types of historic detailing were often employed to add visual interest to the roof essentially elevating the roof to the level of an ornamental architectural element. When repairing or replacing a slate roof, original details affecting its visual character should be retained.

Before repairing or replacing an existing slate roof, it is important to document the existing conditions and detailing of the roof using written, visual, and physical evidence so that original features can be identified and preserved. Documentation should continue through the repair or replacement process as significant details, long obscured, are often rediscovered while carrying out these activities. Local histories, building records, old receipts and ledgers, historic photographs, sketches, and paintings, shadow lines and nail hole patterns on the roof deck, and bits of historic material left over from previous interventions (often found in eave cavities) are all useful sources of information which can be of help in piecing together the original appearance of the roof. Size, shape, color, texture, exposure, and coursing are among the most important characteristics of the original slates which should be documented and matched when repairing or replacing an historic slate roof.

Historically, three types of slate roofing--standard, textural, and graduated-were available according to the architectural effect desired. Standard grade slate roofs were most common. These are characterized by their uniform appearance, being composed of slates approximately 3/16" (0.5cm) thick, of consistent length and width, and having a smooth cleavage surface. Thirty different standard sizes were available, ranging from 10" (25cm) x 6" to 24" x 14" (15cm x 61cm x 35cm). The slates were laid to break joints and typically had square ends and uniform color and exposure. Patterned and polychromatic roofs were created by laying standard slates of different colors and shapes on the roof in such a way as to create sunbursts, flowers, sawtooth and geometric designs, and even initials and dates. On utilitarian structures, such as barns and sheds, large gaps were sometimes left between each slate within a given course to reduce material and installation costs and provide added ventilation for the interior.

Textural slate roofs incorporate slates of different thicknesses, uneven tails, and a rougher texture than standard slates. Textural slate roofs are perhaps most often associated with Tudor style buildings where slates of different colors are used to enhance the effect.

Graduated slate roofs were frequently installed on large institutional and ecclesiastical structures. The slates were graduated according to thickness, size, and exposure, the thickest and largest slates being laid at the eaves and the thinnest and smallest at the ridge. Pleasing architectural effects were achieved by blending sizes and colors.

roof valley
Valleys are formed at the internal angle of two roofing slopes. Flashing is often placed under the slate to increase moisture protection at this vulnerable joint. Photo: Jeffrey S. Levine.

Detailing at the hips, ridges and valleys provided added opportunity to ornament a slate roof. Hips and ridges can be fashioned out of slate according to various traditional schemes whereby the slates are cut and overlapped to produce a watertight joint of the desired artistic effect. Traditional slate ridge details are the saddle ridge, strip saddle rid~e and comb ridge, and for hips, the saddle hip, mitered hip Boston hip, and fantail hip. A more linear effect was achieved by covering the ridges and hips with flashing called "cresting" or "ridge roll" formed out of sheet metal, terra cotta, or even slate. Snow guards, snow boards, and various types of gutter and rake treatments also contributed to the character of historic slate roofs.

Two types of valleys were traditionally employed, the open valley and the closed valley. The open valley is lined with metal over which slates lap only at the sides. Closed valleys are covered with slate and have either a continuous metal lining or metal flashing built in with each course. Open valleys are easier to install and maintain, and are generally more watertight than closed valleys. Round valleys are a type of closed valley with a concave rather than Vshaped section. Given the broader sweep of the round valley, it was not uncommon for roofers to interweave asphalt saturated felts rather than copper sheet in the coursing in order to cut costs.

Although principally associated with graduated and textural slate roofs, round valleys were infrequently employed due to the difficulty and expense of their installation.

Common types of sheathing used include wood boards, wood battens, and, for fireproof construction on institutional and government buildings, concrete or steel. Solid wood sheathing was typically constructed of tongue and groove, square edged, or shiplapped pine boards of 1" (2.5 cm) or 1-1/4" (3 cm) nominal thickness. Boards from 6" (15 cm) to 8" (20 cm) wide and tongue and groove boards were generally preferred as they were less likely to warp and curl.

Wood battens, or open wood sheathing, consisted of wood strips, measuring from 2" (5 cm) to 3" (7.5 cm) in width, nailed to the roof rafters. Spacing of the battens depended on the length of the slate and equaled the exposure. Slates were nailed to the batten that transected its midsection. The upper end of the slate rested at least " (1.25 cm) on the batten next above. Open wood sheathing was employed primarily on utilitarian, farm, and agricultural structures in the North and on residential buildings in the South where the insulating value of solid wood sheathing was not a strict requirement. To help keep out dust and wind driven rain on residential buildings, mortar was often placed along the top and bottom edge of each batten, a practice sometimes referred to as torching.

snow guards
Eave details include snow guards, snow boards, and gutter treatments. Snow guards are generally used in areas where the ice and snow accumulate to avoid dangerous slides from the roof. Photo: Jeffrey S. Levine.

Steel angles substituted for the wood battens in fireproof construction. The slates were secured using wire wrapped around the steel angle, where it was twistedoff tight. Alternately, any of a variety of special fasteners patented over the years could have been used to attach the slate to the steel angle. On roofs with concrete decks, slates were typically nailed to wood nailing strips embedded in the concrete.

Beginning in the late nineteenth century, asphalt saturated roofing felt was installed atop solid wood sheathing. The felt provided a temporary, watertight roof until the slate could be installed atop it. Felt also served to cushion the slates, exclude wind driven rain and dust, and ease slight unevenness between the sheathing boards.

Slate was typically laid in horizontal courses starting at the eaves with a standard headlap of 3" (7.5 cm) (Figure 10). Headlap was generally reduced to 2" (5 cm) on Mansard roofs and on particularly steep slopes with more than 20" (50 cm) of rise per 12" (30 cm) of run. Conversely, headlap was increased to 4" (10 cm) or more on low pitched roofs with a rise of 8" (20 cm) or less per 12" (30 cm) of horizontal run. The minimum roof slope necessary for a slate roof was 4" (10 cm) of rise per 12" (30 cm) of run.


Home  Roofing Estimates  Covered Bridge  Slate Facts  Photo Album

contact:
East Coast Builders - Roofing Specialists

Granville, New York 12832
"Have Slate?... We'll Travel!"


Email Here!
Email Here!

Fill in the To:addess as in the image above.