space.gif (104 bytes)  
Roofing Specialists


Email Here!
Email Here!

Fill in the To:addess as in the image above. 
 

Home page logo: Ongong slate roof repair. Photo: Jeffrey S. Levine

The Repair, Replacement
& Maintenance of Historic
Slate Roofs

Jeffrey S. Levine

Introduction
History of Slate Use
Character and Detailing
Where Does Slate Come From?
Deterioration of Slate and Slate Roofs
Repairing Slate Roofs
The Replacement of Deteriorated Roofs
Maintenance
Conclusion

Where Does Slate Come From?

Slate is a fine grained, crystalline rock derived from sediments of clay and fine silt which were deposited on ancient sea bottoms. Superimposed materials gradually consolidated the sedimentary particles into bedded deposits of shale. Mountain building forces subsequently folded, crumpled, and compressed the shale. At the same time, intense heat and pressure changed the original clays into new minerals such as mica, chlorite, and quartz. By such mechanical and chemical processes bedded clays were transformed, or metamorphosed, into slate, whole geologic ages being consumed in the process. Slates vary in composition, structure, and durability because the degree to which their determinant minerals have been altered is neither uniform nor consistent.

slater's tools
These traditional slater's tools are used to cut and trim, hammer, measure, and rip out nails. Photo: Jeffrey S. Levine.

The adaptation of slate for roofing purposes is inextricably linked to its genesis. The manufacturing processes of nature have endowed slate with certain commercially amenable properties which have had a profound influence on the methods by which slate is quarried and fabricated, as well as its suitability for use as a roofing tile.

Slate roofing tiles are still manufactured by hand using traditional methods in a five step process: cutting, sculping, splitting, trimming, and hole punching. In the manufacturing process, large, irregular blocks taken from the quarry are first cut with a saw across the grain in sections slightly longer than the length of the finished roofing slate. The blocks are next sculped, or split along the grain of the slate, to widths slightly larger than the widths of finished slates. Sculping is generally accomplished with a mallet and a broadfaced chisel, although some types of slate must be cut along their grain. In the splitting area, the slightly oversized blocks are split along their cleavage planes to the desired shingle thickness. The splitter's tools consist of a wooden mallet and two splitting chisels used for prying the block into halves and repeating this process until the desired thinness is reached. The last two steps involve trimming the tile to the desired size and then punching two nail holes toward the top of the slate using a formula based on the size and exposure of the slate.

Minerals, the building blocks of rocks, through their characteristic crystalline structures define the physical properties of the rocks which they compose. Slate consists of minerals that are stable and resistant to weathering and is, therefore, generally of high strength, low porosity, and low absorption. The low porosity and low absorption of slate mitigate the deleterious action of frost on the stone and make it well adapted for roofing purposes. The two most important structural properties of slate are cleavage and grain.

The metamorphic processes of geologic change necessary to produce slate are dependent upon movements in the earth's crust and the heat and pressure generated thereby. For this reason, slate is found only in certain mountainous regions. The most economically important slate deposits in this country lie in the Mid-Atlantic and Northeastern states transversed by or bordering on the Appalachian Mountain chain. Variations in local chemistry and conditions under which the slate was formed have produced a wide range of colors and qualities and ultimately determine the character of the slate found in these areas.

Slate is available in a variety of colors. The most common are grey, blue-grey, black, various shades of green, deep purple, brick red, and mottled varieties. The presence of carbonaceous matter, derived from the decay of marine organisms on ancient sea floors, gives rise to the black colored slates. Compounds of iron generate the red, purple, and green colored slates.

Generally, the slates of Maine, Virginia, and the Peach Bottom district of York County, Pennsylvania are deep blue-black in color. Those of Virginia have a distinctive lustrous appearance as well due to their high mica content. The slates of Lehigh and Northampton Counties, Pennsylvania, are grayish-black in color. Green, red, purple, and mottled slates derive from the New York-Vermont district. The slate producing region of New York, which centers around Granville and Middle Granville, is particularly important because it contains one of the few commercial deposits of red slate in the world.

Slates are also classified as fading or unfading according to their color stability. Fading slates change to new shades or may streak within a short time after exposure to the atmosphere due to the presence of finegrained disseminated pyrite. For example, the "weathering green" or "seagreen" slates of New York and Vermont are grayish green when freshly quarried. Upon exposure, from 20% to 60% of the slates typically weather to soft tones of orange-brown, buff, and gray while the others retain their original shade. Slates designated as unfading maintain their original colors for many years.

Color permanence generally provides no indication of the durability of slate. Rather, time has shown that the Vermont and New York slates will last about 125 years; Buckingham Virginia slates 175 years or more; and Pennsylvania SoftVein slates in excess of 60 years; Pennsylvania HardVein slates and Peach Bottom slates, neither of which is still quarried, had life spans of roughly 100 and at least 200 years respectively. The life spans provided should be used only as a general guide in determining whether or not an existing slate roof is nearing the end of its serviceable life.

Ribbons are visible as bands on the cleavage face of slate and represent geologic periods during which greater amounts of carbonaceous matter, calcite, or coarse quartz particles were present in the sediment from which the slate was formed. Ribbons typically weather more and were most common in Pennsylvania slate quarries. As they were not as durable as clear slates, ribbon slate is no longer manufactured for roofing purposes. Mottled grey slates from Vermont are the closest match for Pennsylvania ribbon slate available today.

In recent years, slates from China, Africa, Spain and other countries have begun to be imported into the United States, primarily for distribution on the West Coast. The use of imported slates should probably be limited to new construction since their colors and textures often do not match those of U.S. slate.


Home  Roofing Estimates  Covered Bridge  Slate Facts  Photo Album

contact:
East Coast Builders - Roofing Specialists

Granville, New York 12832
"Have Slate?... We'll Travel!"


Email Here!
Email Here!

Fill in the To:addess as in the image above.